You’re Smarter Than a Database
Overcoming the optimizer’s bad cardinality estimates
Bobby Durrett

US Foodservice
Introduction
Relational databases which use SQL make programmers more productive by allowing them to specify the values they want to query from the database without telling the database how to retrieve them.  Early in my career, I used a pre-relational database called Datacom/DB, now owned by Computer Associates.  Our programmers had to write COBOL code which looped through the records of each table, and they had to choose the appropriate indexes.  When we moved to Oracle the developers could express in a single SQL statement what would otherwise have taken many lines of code.  Here is a pseudo-code example of the kind of logic you would have to write in a pre-relational DB:

Read column a from table one using index i1 where one.c=10

while more table one rows exist get next row
    Read column b from table two using index i2 where two.a = one.a

    while more table two rows exist get next row
        print one.a,two.b

    end while

end while

In SQL this would just be

select one.a,two.b from one,two where one.c=10 and one.a=two.a;

The SQL states which columns to return and the criteria.  The code describes exactly what steps to take to get those results.  Completely describing how to access the database as we did when we used Datacom can lead to very efficient code.  Our mainframe database had to run in only a few megabytes of virtual memory under the ancient VSE operating system that we used.  We were able to function by hand coding efficient database code, but it was labor intensive.  So, we moved our applications to Oracle to increase our programmers’ productivity and it did.  Developers and DBAs were able to do in minutes on Oracle what took hours on Datacom.
The productivity gains that come from programming using Oracle’s SQL database come at the cost of efficiency.  The Oracle optimizer does the job that our COBOL programmers used to do.  It determines the code that the database will actually execute to fulfill the query including all the loops and indexes.  But, the optimizer does not have the same kind of knowledge about the data that developers do and so it chooses very inefficient ways to run some queries.  That is what I meant by you being smarter that a database.  The increased productivity of SQL results in inefficient code.  Our databases no longer run in megabytes of RAM; we have trouble getting Oracle to run well with gigabytes of memory.  This paper looks at specific examples of the optimizer running SQL poorly and how to work around Oracle’s inherent limitations.

The Oracle optimizer’s lack of knowledge about the data in its tables leads it to miscalculate the number of rows your query returns, its cardinality, and choose an inefficient method of running your SQL as a result.  The database considers a number of possible methods to run a statement, called execution plans, and chooses the plan that it thinks will run in the shortest length of time.  It figures out how long each plan will take by first estimating the number of rows that each step of the plan will return based on the statistics it has available about the tables affected by that step.  Then it considers how long it will take to return that many rows from those tables based on how the data is being retrieved.  Lets look at a simple example with one table:

---------------------------------------------------------------------------

| Id  | Operation         | Name  | Rows  | Bytes | Cost (%CPU)| Time     |

---------------------------------------------------------------------------

|   0 | SELECT STATEMENT  |       |    10 |    30 |     3   (0)| 00:00:01 |

|*  1 |  TABLE ACCESS FULL| TEST1 |    10 |    30 |     3   (0)| 00:00:01 |

---------------------------------------------------------------------------

The “Rows” column shows how many rows the optimizer thinks will be accessed by that step of the plan.  The “Cost” column estimates how long it will take to access that many rows depending on what that step does.  In this case the step does a full scan of a table and the cost estimates how long that will take for ten rows.  The optimizer will always choose the lowest cost plan, but if its cardinality estimates are wrong then the cost will be wrong.  The lowest cost plan may actually take a lot more real time to run than one with a higher cost.  So, a faulty estimate of the query’s cardinality will cause the cost of its execution plan to not reflect the actual time the query will take to run and may cause the optimizer to choose a poorly performing plan over one that will execute in much less time.  The rest of this paper addresses cardinality issues in three practical steps:  figure out if you have a cardinality issue, understand the reason for it, and choose a strategy for fixing it.
Step 1: Find out whether the optimizer got the cardinality wrong
You can tell if the optimizer got your query’s cardinality wrong by comparing the number of rows it lists on the SQL’s execution plan to the number of rows it actually accesses.  As part of this paper I’ve created four SQL scripts which illustrate four examples of how the optimizer calculates cardinality.  I’ll include pieces of their output throughout the paper where it is appropriate.  I edited some of the output to fit neatly and be less cluttered.  But, you can find all of the scripts and their output at this web address: http://www.geocities.com/bobbyandmarielle/sqltuning.zip.  The first example shows a query where the optimizer gets its cardinality right.  I used its plan in the example above.  It is just a table with ten rows and no index:

select a,count(*) from test1 group by a;

         A   COUNT(*)                   

---------- ----------                   

         1         10                   

Here is the query and the plan:

select * from test1 where a=1;
-------------------------------------------

| Id  | Operation         | Name  | Rows  |

-------------------------------------------

|   0 | SELECT STATEMENT  |       |    10 |

|*  1 |  TABLE ACCESS FULL| TEST1 |    10 |

-------------------------------------------

The “Rows” column shows the number of rows the optimizer believes your query will return.  The first line shows the number of rows the query as a whole will return.  The second line shows the number of rows the query will access from the particular table in that step.  A query plan looks like a tree.  There are nodes and branches.  Each part of the tree will have its own cardinality and the cardinality error can appear anywhere in the plan.  So, to check your query’s cardinality, first get its plan and check the column named rows for each step.  Then you have to figure out how many rows your query really accesses during that step.  Build a SQL statement that starts with select count(*) and includes the portion of the SQL query that is reflected by that step of the plan.  Our example SQL doesn’t have any smaller units that you can decompose it into so you can only select count(*) on the entire query:  
select count(*) from test1 where a=1;
In more complex queries you would take a particular step in the plan which represents a join between multiple tables and pull out the portions of the from and where clauses that the step implements and then compare the number of rows it returns to the estimate in the plan.  In our simple example the actual number of rows accessed matches the estimated number.  If the numbers match for your slow query you wouldn’t pursue cardinality issues further.  The rest of the examples show cases where they do not match.

Step 2:  Understand the reason for the wrong cardinality
If you determined that the optimizer miscalculated your query’s cardinality you must figure out if it did so because it assumes an equal distribution of column values or because it assumes an equal distribution of combinations of column values.  Oracle has a lot less information about your data than you do in both of these cases.  In the first case, the optimizer assumes the equal likelihood of all possible column values.  Take a table that has names in it.  Oracle assumes that all last names occur with equal frequency, but you know that in the United States “Smith” and “Jones” occur more frequently than other last names.  In the second case, Oracle assumes that no relationship exists between columns.  For example, we know that the zipcode column of an address table relates to the state column but Oracle doesn’t.  It assumes that every combination of state and zipcode occurs with equal frequency, even ones like the state Alaska and a zipcode in Hawaii.  I give an example of each type of faulty assumption and explain how to figure out which one causes the cardinality miscalculation in your query’s case.
Unequal distribution of values in a single column
The second of our four example scripts shows the case where the database wrongly assumes equally distributed column values.  In this case we have a table with one column that has a million rows with value 1 and one with value 2.

select a,count(*) from TEST2 group by a;

         A   COUNT(*)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   

---------- ----------                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   

         1    1000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   

         2          1   

But the optimizer estimates that a query with a=2 will return 500,000 rows.
select * from TEST2 where a=2;
---------------------------------------------------

| Id  | Operation            | Name       | Rows  |

---------------------------------------------------

|   0 | SELECT STATEMENT     |            |   500K|

|*  1 |  INDEX FAST FULL SCAN| TEST2INDEX |   500K|

---------------------------------------------------

Note that the plan includes an “INDEX FAST FULL SCAN” to get the data.  A fast full scan, which reads the entire index from start to finish, wastes a lot of time when you only want one row out of a million.  If you were really accessing half of the million rows a full scan would make the most sense.  The plan really should have a range scan.  In my tests, a range scan ran in about one hundredth of the time of the full scan.  The optimizer estimates the number of rows based on the statistics of the column in the query and the statistics of the table in the query.
Column stats, column a:

       LOW       HIGH NUM_DISTINCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          

---------- ---------- ------------                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          

         1          2            2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          

“LOW” is the lowest value for the column.  “HIGH” is its highest value.  “NUM_DISTINCT” is the number of distinct values of that column. 
Table stats:

  NUM_ROWS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              

----------                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              

   1000001                 

“NUM_ROWS” is just the number of rows the optimizer thinks the table has.  Check my scripts to see how I retrieved these statistics.  The optimizer calculated the number of rows using this formula:
Number of rows in plan = (number of rows in table)* (1/number of distinct values)
or

500000=1000001*(1/2)

The formula assumes that each of the distinct column values is equally likely.  The optimizer checked that the value 2 in the predicate a=2 fell within the column’s LOW and HIGH values and then assumed that one half of the rows had this value.
Combinations of column values not equally distributed
Our third example script shows a case where the optimizer assumes an equal distribution of combinations of column values.  Here is how the data is laid out in this test case:

select a,b,count(*) from TEST3 group by a,b;

         A          B   COUNT(*)                                                                    

---------- ---------- ----------                                                                    

         1          1    1000000                                                                    

         1          2          1                                                                    

         2          2    1000000  

Each column has the same number of ones and twos, but the table contains only one column combination (1,2).  In this case the values within the columns are equally distributed between the two distinct values, but the combination of column values are not.  Our example shows that the optimizer assumes that all four possible combinations of the two column values are equally likely.  i.e. (1,1),(1,2),(2,1),(2,2)  Our query selects the one row with the column values (1,2) out of the two million and one records.
select sum(a+b)

from TEST3

where

a=1 and b=2;
----------------------------------------------------

| Id  | Operation             | Name       | Rows  |

----------------------------------------------------

|   0 | SELECT STATEMENT      |            |     1 |

|   1 |  SORT AGGREGATE       |            |     1 |

|*  2 |   INDEX FAST FULL SCAN| TEST3INDEX |   500k|

----------------------------------------------------

Here are the statistics:

C        LOW       HIGH NUM_DISTINCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        

- ---------- ---------- ------------                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      

A          1          2            2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      

B          1          2            2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       

  NUM_ROWS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              

----------                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              

   2000001                    

Number of rows in plan =

(number of rows in table)*

(1/number of distinct values column A)*

(1/number of distinct values column B)
or

500000=2000001*(1/2)*(1/2)

It assumes that one fourth of the rows will have the column values (1,2).  Because it believes that a large number of rows will be returned it picks a full index scan.  Just like example two, example three takes about a hundred times longer with a full scan than it would with a range scan.
How to know which assumption caused your query’s cardinality problem

Use the same kinds of queries and calculations shown in the above two examples to determine which assumption caused your query’s cardinality problem.  In Step 1 of this paper you figured out which step in your plan had the cardinality problem by building a select count(*) query on the from clause and where conditions that went along with that step in the plan.  To figure out which wrong assumption about your data caused the cardinality problem you need to take the same from clause and where clause and replace the select count(*) with a select grouping on the columns that the step selects. 
You need to do this for each individual column as well as all possible column combinations.  So, for our third example you would not only group on both columns A and B as we did above, but you would also do
select a,count(*) from TEST3 group by a;

select b,count(*) from TEST3 group by b;

If a single column has a very different count on certain values then you know you have an issue with an unequal distribution of values within a single column.  If combinations occur with very different frequencies, like in example three, then you know you have the second situation.  Then you should look at the column and table statistics for the columns and tables with the unequal distribution and do the same calculations we do to see if the cardinality reported by the plan matches the logic you believe it uses.  Looking at the numbers and doing the math will either confirm or correct your understanding of the way Oracle looks at your data.
Step 3:  Choose the best strategy for fixing the cardinality problem
You fix badly performing queries with cardinality problems by either giving the optimizer more information so it can make a correct cardinality estimate, overriding the bad choices it made by telling the database the correct way to run the SQL, or changing your application so that the database calculates cardinality correctly and runs your code efficiently.  In each case you attempt to continue to benefit from the automatic query execution that the optimizer provides you with by performing the least amount of additional work needed to get around the cases where it gets the cardinality wrong.  You could go back to the equivalent of my COBOL example in the introduction and write out code to tell the database exactly how to access the tables in every query which runs inefficiently.  But then you lose the benefit of SQL.  Each approach below represents a different way to keep using Oracle’s optimizer where it works and get around its limitations when it doesn’t. 
Giving the optimizer more information
Use histograms or stored profiles to give the optimizer more information so it can make a better cardinality estimate.  Histograms help with unequally distributed values within a single column while stored profiles deal with unequally distributed combinations of column values.  In both of these cases you still take advantage of the Oracle optimizer because you still use plain SQL for your queries.  But you expend additional effort giving it more information about the data in your tables.
Histograms
A histogram records the distribution of values within a single column of a table and helps the optimizer correctly estimate the cardinality of queries on columns with unequally distributed data.  The stats on the table in example 2 had been gathered without histograms on the column.  You gather statistics with no histograms using the parameter method_opt in this way:
method_opt=>'FOR ALL COLUMNS SIZE 1'
SIZE 1 means that you just know the minimum and maximum value for the column and the number of distinct values but nothing else.  Next I gathered stats on the same table with an option that will create a histogram on the column.  A histogram records how many values of a column fall into various “buckets.”  So, a 10 bucket histogram will have 10 ranges of values and the count of the rows that fall into those ranges.  The SIZE parameter to method_opt sets the maximum number of buckets to use on a column.  Here is the stats-gathering option I used in example 2 and the plan that resulted:

method_opt=>'FOR ALL COLUMNS SIZE 254'
-----------------------------------------------

| Id  | Operation        | Name       | Rows  |

-----------------------------------------------

|   0 | SELECT STATEMENT |            |     1 |

|*  1 |  INDEX RANGE SCAN| TEST2INDEX |     1 |

-----------------------------------------------

Notice that now the optimizer knows that there is only one row with a value of 2 and chooses the range scan.  In my test the SQL ran much faster because the index was accessed properly.  Here are the column stats after gathering stats with SIZE 254:

       LOW       HIGH NUM_DISTINCT NUM_BUCKETS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          

---------- ---------- ------------ -----------                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          

         1          2            2           2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          

The NUM_BUCKETS value 2 means that there is a bucket for each of the two distinct values; as a result the optimizer knows that the value 1 had one million rows and the value 2 has one row.  Histograms can give the optimizer more accurate counts of the number of rows that have a column with a particular value.  Histograms work best on columns with fewer than 255 distinct values because they can exactly record the number of rows with a given column value. That leads to accurate cardinality estimates.  But they only help when you have an unequal distribution of data on a single column.  In many other cases histograms do not improve the plan so you have to use some of the other techniques listed below.  In particular, look at the column statistics for example 3 above.  I gathered stats on it with 

method_opt=>'FOR ALL COLUMNS SIZE 254'
NUM_BUCKETS=2 on it just as it did after gathering stats with histograms on example 2, but in example 3 it picked the wrong plan.  Example 3 shows that queries with equally distributed data in all of their individual columns can have bad cardinality estimates and can’t be improved by histograms.  But, SQL Profiles did help example 3.
SQL Profiles
SQL profiles, new with 10g, let you improve the speed of a given query by giving the optimizer the information it needs to correctly estimate the cardinality when the data in a group of columns is unequally distributed.  You create SQL profiles using the SQL Tuning Advisor feature.  You execute the advisor’s functions 

DBMS_SQLTUNE.CREATE_TUNING_TASK, DBMS_SQLTUNE.EXECUTE_TUNING_TASK, and DBMS_SQLTUNE.ACCEPT_SQL_PROFILE 

to analyze the SQL statement or statements and put the new profile in place.  For brevity, I’ve just listed the names of the procedures.  See the scripts for details of how to run these.  Here is the output of the SQL tuning advisor for the query in example 3:

DBMS_SQLTUNE.REPORT_TUNING_TASK('MY_SQL_TUNING_TASK')                                               

-----------------------------------------------------------------------

GENERAL INFORMATION SECTION                                                                         

-----------------------------------------------------------------------                    

Tuning Task Name   : my_sql_tuning_task                                                             

Scope              : COMPREHENSIVE                                                                  

Time Limit(seconds): 600                                                                            

Completion Status  : COMPLETED                                                                      

Started at         : 09/14/2006 13:26:05                                                            

Completed at       : 09/14/2006 13:26:10                                                            

-----------------------------------------------------------------------                     

SQL ID  : 2fw0d281r0x2g                                                                             

SQL Text: select sum(a+b) from TEST3 where a=1 and b=2                                              

-----------------------------------------------------------------------
FINDINGS SECTION (1 finding)                                                                        

-----------------------------------------------------------------------
1- SQL Profile Finding (see explain plans section below)                                            

--------------------------------------------------------                                            

  A potentially better execution plan was found for this statement.                                 

  Recommendation (estimated benefit: 99.68%)                                                        

  ------------------------------------------                                                        

    Consider accepting the recommended SQL profile.   

After accepting the recommended profile the plan for the query changes.  Notice that the optimizer now knows that only one row will be returned and it chooses the range scan of the index.

------------------------------------------------

| Id  | Operation         | Name       | Rows  |

------------------------------------------------

|   0 | SELECT STATEMENT  |            |     1 |

|   1 |  SORT AGGREGATE   |            |     1 |

|*  2 |   INDEX RANGE SCAN| TEST3INDEX |     1 |

------------------------------------------------

As in example 2 the range scan runs the query in about one hundredth of the time as the full scan.  Unfortunately, a given SQL profile only applies to a single SQL statement, so you have to generate a profile for every SQL that experiences a cardinality issue.  We have shown that histograms and SQL Profiles can overcome bad cardinality estimates and result in better execution plan choices, but there are many cases where neither of these features will improve a plan that suffers from a wrong cardinality calculation.

Overriding optimizer decisions
If you can’t help the optimizer by giving it more information you can override its bad decisions with hints.  It surprised me to find that a SQL profile doesn’t work across multiple tables.  In example 4 I tried to use a SQL profile and it still got the number of rows wrong and chose the wrong plan.  I also gathered histogram stats to no avail.  Example four shows that there are cases where giving Oracle more information won’t help.  This case has two tables with data like this:

create table SMALL (NAME VARCHAR2(4),NUM NUMBER);

create table LARGE (NUM NUMBER);

insert into SMALL values ('MANY',1);

insert into SMALL values ('FEW',2);

select NUM, count(*) from LARGE group by NUM;

       NUM   COUNT(*)                                                                               

---------- ----------                                                                               

         1    1000000                                                                               

         2          1  
You join the tables SMALL and LARGE on the column NUM.  The string ‘MANY’ points to the number 1 which has many rows in the table LARGE.  The string ‘FEW’ points to the number 2 which has only one row in the table LARGE.  So, look at the following query, its plan, and the cardinality calculation:

select B.NUM

from SMALL A,LARGE B

where

a.NUM=B.NUM and

A.NAME='FEW';
----------------------------------------------------

| Id  | Operation             | Name       | Rows  |

----------------------------------------------------

|   0 | SELECT STATEMENT      |            |   125K|

|*  1 |  HASH JOIN            |            |   125K|

|*  2 |   TABLE ACCESS FULL   | SMALL      |     1 |

|   3 |   INDEX FAST FULL SCAN| LARGEINDEX |  1000K|

----------------------------------------------------
Number of rows in plan=

(number of rows in table LARGE)*

(1/number of distinct values column NAME table SMALL)*

(1/number of distinct values column NUM table SMALL)*

(1/number of distinct values column NUM table LARGE)
or

125000=1000001*(1/2)*(1/2) *(1/2)

Actually, I don’t know exactly how Oracle does this calculation; the cardinality comes out as 500000 when you don’t have histograms on the columns.  See the references for more details on how Oracle calculates cardinality on joins.  The optimizer assumes that any combination of NAME and NUM in the table SMALL and NUM in the table LARGE is equally likely.  But we know that there is only one combination where NAME=’FEW’ and the tables are joined on the num column.  Unlike examples 2 and 3 histograms and SQL profiles don’t help.  If you have a situation like example 4 where you can’t give the optimizer more information so it can make the right choice you can simply override the optimizer’s choice.  In each of the three problem examples, two through four, you could easily fix the query to run efficiently using two hints.  One tells it to use the index and the other tells it not to do a full scan.  Here is the SQL for example four with the hints to tell it how to use the index.

select /*+ INDEX(B LARGEINDEX) NO_INDEX_FFS(B LARGEINDEX) */ B.NUM

from SMALL A,LARGE B

where

a.NUM=B.NUM and

A.NAME='FEW';

With hints like these each of the three sample queries runs in a fraction of the time that they did without the hints.  The problem with using hints to override the optimizer’s choices is that you need to do it for every affected SQL statement.  If you could fix the underlying problem you could save yourself a lot of time tuning all of your queries.  It isn’t quite as bad as writing out COBOL code for everything the query does, but it does require more effort for every SQL that needs improvement.  Giving the optimizer more information with histograms and SQL profiles is better than using hints because they have the potential to improve many queries without modifying them.  But, as we have seen, not all problem queries can be improved by using histograms and SQL profiles.

Changing the application
If giving the optimizer more information won’t work in your case, and you want to avoid putting hints on every problem SQL statement then modify your application so that the optimizer correctly calculates your SQL’s cardinality and chooses efficient plans.  Change your code so that Oracle’s assumptions about column values don’t impact your application’s performance.  For the purposes of an example I thought up a way to fix example 4 by modifying the tables and SQL and not using a hint.  It had to accomplish the same function as the original.  I eliminated the small table by putting its field on the large table.  Then I split the large table in two.  The table LARGEA has a million rows with the name MANY and num 1.  LARGEB has one row with the name FEW and num 2.  I changed the query to have the union of selects on the two tables as a sub-select in its from clause and eliminated the join on the small table.  Here is the last modified query and its plan:

select NUM

from (select * from largea

union

select * from largeb)

where

NAME='FEW';

--------------------------------------------------------------

| Id  | Operation                      | Name        | Rows  |

--------------------------------------------------------------

|   0 | SELECT STATEMENT               |             |     2 |

|   1 |  VIEW                          |             |     2 |

|   2 |   SORT UNIQUE                  |             |     2 |

|   3 |    UNION-ALL                   |             |       |

|   4 |     TABLE ACCESS BY INDEX ROWID| LARGEA      |     1 |

|*  5 |      INDEX RANGE SCAN          | LARGEAINDEX |     1 |

|   6 |     TABLE ACCESS BY INDEX ROWID| LARGEB      |     1 |

|*  7 |      INDEX RANGE SCAN          | LARGEBINDEX |     1 |

--------------------------------------------------------------
This runs just as fast as the original SQL and tables with the hint.  You aren’t dependent on hints or the ability to use histograms or SQL profile’s when you rewrite your application to work well given how Oracle works.  If you were designing an application from scratch this kind of approach would be great because once you have laid out your tables so that you work around Oracle’s limitations you can still use SQL against them without having to carefully tune each query with hints.  You put effort into designing the tables right, but then you can rapidly develop using SQL without painstakingly tuning each query.  All three of these methods can make a huge difference in a query’s performance, but they don’t all apply in every situation.  You need to understand each approach and then choose the one that best fits your situation.  Just keep in mind the goal of minimizing development effort by taking advantage of Oracle’s automatic SQL optimization while working around its limitations.
Conclusion
Oracle’s SQL engine enables you to rapidly create new database applications by allowing you to specify what you want to get from your database without telling it how to get it, but when your data isn’t distributed in the way the optimizer expects, it will run your code inefficiently.  To get around these limitations you must first identify cases where Oracle’s assumptions about your data have caused it to get your query’s cardinality wrong and led to an inefficient execution plan.  Then you must find out if the unequal distribution of data within a single column, or the unequal distribution of data within a combination of several columns resulted in the cardinality being computed incorrectly.  Last, you must choose a strategy which gets around the error and produces the most performance benefit in your situation with the least additional effort.  These strategies included giving the optimizer more information about your data’s distribution, using hints to override the optimizer’s decisions, and modifying the structure of the tables so that the optimizer’s assumptions no longer cause cardinality errors and bad performance.  Each solution represents a different approach to working around the optimizer’s innate limitations without completely losing its advantages.
References

“Cost Based Optimizer Fundamentals” - Jonathan Lewis

Metalink Note:212809.1 - “Limitations of the Oracle Cost Based Optimizer”
Metalink Note:68992.1  - “Predicate Selectivity”
“Histograms – Myths and Facts” - Wolfgang Breitling, Select Journal Volume 13, Number 3

