Using SQL and PLSQL for Mid-Tier Database Caching

ORACLE

Doug Hood @ScalableDBDoug Consulting Member of Technical Staff Product Manager TimesTen In-Memory Database, Oracle In-Memory & Oracle NoSQL May 16, 2019

Memory Hierarchies (old school)

Memory Hierarchies (any modern CPU)

Memory Hierarchies (L1, L2 and L3 caches & 4 cores)

Memory Hierarchies (Intel's vision)

Latency, Throughput and Scalability

Latency

How quickly can one operation complete

One sprinter in 9.58 seconds ~ 40 km/h for 100M [2009]

Throughput

Scalability

How quickly can many operations complete

Ten sprinters in under 11 seconds ~ 40 km/h for 100m [2009]

By adding more resources can throughput keep increasing

33 cars on 2.5 mile oval track ~250 km/h for 804 km [Indy 500, 2017]

Latency Optimization

Before	After		
43	3		
69	6		
105	8		
121	20		
140	18		
163	19		
231	18		

ORACLE

RAC – Real Application Clusters

Oracle 11.2.0.4 RAC Oracle Sun X7-2L NVMe Storage Over 50 Million Users

Latency is in Micro Seconds ...

Why Cache Data?

Why Cache Data?

- To get lower latency for SQL statements
- To get more throughput
- To get more scalability

Caching Challenges

The Business Problem

- DB apps, make them faster and cheaper
- Do more with less

The DevOps Challenge

- Make it boring, no surprises
- Standardized, run in VMs or containers
- Everything is automated

• Figure out everything that can go wrong and be well behaved

- How many users? How many concurrent users?
- How many concurrent Oracle DB connections?
- How many concurrent Application Server connections?
- What about HA? What about DR?
- What about latency?

Can we do better?

Shared Servers (MTS)

Can we do better?

Can we do better?

- Go faster than NoSQL solutions & minimize the hardware cost
 - Lower latency at the **99th percentile**

Simple and scalable is good,

but how many machines do you need?

- What about the 95th and 99th percentile for latency?
- What about cache misses?
- How is the cache kept up to date?

ORACIE

99th percentile latency can be as high as 324 ms ... 100th percentile latency is many seconds, timeout > 100 ms

	Database	TPS	Nodes
cassandra	Cassandra	221K	32
mongoDB	MongoDB	260K	2
Couchbase	CouchBase	454K	9
redis	Redis	1M	3
VOLTDB	VoltDB	1.5M	6
AEROSPIKE	AeroSpike	1.6M	1
ORACLE [®] TimesTen	TimesTen	2.8M	1

YCSB Workload B (95% read, 5% write)

Customer measured TimesTen Cache latency

- 97% cache hit ratio
 - 3% of the time the data was not in the cache, so needed a round trip to Oracle
- 99th percentile latency = 1ms

Percentile	Latency in ms	
87	0.016	
98	0.125	
99.7	1	NoSQL was 324 m
99.99	8	
100	423	

Customer measured TimesTen Cache latency

- 97% cache hit ratio
 - 3% of the time the data was not in the cache, so needed a round trip to Oracle
- 99th percentile latency = 1ms

Percentile	Latency in ms
87	0.016
98	0.125
99.7	1
99.99	8
100	423

Working to improve this

- Goal is < 50ms for 100th percentile
- Also define a 300 ms timeout

Improving the 100th percentile [max latency]

For cache misses, create a new SQLNet connection!

This can be **really slow** ...

Can we do better?

Improving the 100th percentile [max latency]

For cache misses, get connection from TT OCI CP rather than the shared pool

Tune the pool for the expected min/max

Can we do better?

How is it possible

- Use a really fast In-memory SQL RDBMS
- Use a Cache DB that just requires configuration
- Some hardware and software tuning

- Prepare & bind SQL statements
- Use the relevant indexes
- Do sensible joins
- Update statistics for SQL optimizer
- Check TimesTen SQL stats for SQL and IO bottlenecks

Most Widely Used Relational In-Memory Database

Deployed by Thousands of Companies

Oracle TimesTen In-Memory Database

Relational Database

- Pure in-memory
- ACID compliant
- Standard SQL / PLSQL
- Entire database in DRAM

Persistent and Recoverable

- Database and Transaction logs persisted on local disk or flash storage
- Replication to standby and DR systems

Extremely Fast

ORACLE[®]

TIMESTEN

IN-MEMORY DATABASE

- Microseconds response time
- Very high throughput

Highly Available

- Active-Standby and multi-master replication
- Very high performance parallel replication
- HA and Disaster Recovery

Performance – Response Time Low Latency - Microseconds Response Time

HLR Mobile Transactions Response Time Response Time Improvement With TimesTen Application-Tier Database Cache

Intel® Xeon CPU E5-2680 @2.7GHZ 2 sockets 8 cores/socket 2 hyper-threads/core 32 vCPU

TimesTen In-Memory Database Persistence and Recovery

TIMESTEN IN-MEMORY DATABASE

TimesTen Tim Checkpoint Tran Files Lo

ORACLE

TimesTen Transaction Log Files

- TimesTen database persistence can be configured on
 - Flash, SSD, hard disk storage
- All transactions are logged and persisted
 - Redo, undo, and recovery
- Dual database Checkpoint files
 - Database restart
 - Database recovery after failures

Cache DB = Oracle Application Tier Database Cache A feature of Oracle Enterprise Edition

Flexible Cache Group Configurations

- Cache Group describes the Oracle Database tables to cache
 - All or subset of rows and columns
 - Defined using SQL

CREATE CACHE GROUP PremierUsers FROM OE.CUSTOMER (NAME VARCHAR2(100) NOT NULL, ADDR VARCHAR2(100)

WHERE OE.CUSTOMER.ORDER > 500;

- Cache tables are regular tables in TimesTen
 - Joins/search, insert/update/delete

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

🚯 Create cache group

Cache Group Attributes Tables Aging DDL			
Dwner D_CACHEUSER			
Name:			
Туре:	🔄 Global 🔄 Dynamic		
	Readonly		
	Readonly		
	Asynchronous Writethrough		
	Synchronous Writethrough		
	User Managed minutes 🔻		
	Refresh State 💿 Paused 🔿 On 🔿 Off		

Cache Grou	p Attributes Tables Aging DDL		
Owner	D_CACHEUSER		
Name:			
Туре:	🔄 Global 🔄 Dynamic		
	Readonly		
	Autorefresh Attributes		
	Mode 💿 Incremental 🔵 Full		
	Refresh Interval 5 minutes 🔻		
	Refresh State 💿 Paused 🔾 On 🔵 Off		

🚯 Create cache group

Cache Group Attributes Tables A	ging DDL				
Tables	Columns Table Attributes				
Tables cachedDEPARTMENTS [HR]	Column name	Data type in Oracle	Data type in TimesTen	Allow Inuli value	es 🗹 Cached
Add root table	DEPARTMENT_ID	NUMBER(4)	NUMBER(4)	•	V
Add <u>c</u> hild tables	DEPARTMENT_NAME	VARCHAR2(30 BYTE)	VARCHAR2(30 BYTE)		✓
<u>R</u> emove table	MANAGER_ID	NUMBER(6)	NUMBER(6)	▼ ✓	✓
	LOCATION_ID	NUMBER(4)	NUMBER(4)	▼ ✓	✓


```
DDL
  Cache Group Attributes | Tables |
                               Aging
CREATE READONLY CACHE GROUP "TTORACACHE"
 AUTOREFRESH MODE INCREMENTAL INTERVAL 5 MINUTES
 STATE PAUSED
FROM
  "D_ORATT"."DEPARTMENTS" (
   "DEPARTMENT_ID" NUMBER(4) NOT NULL,
   "DEPARTMENT NAME" VARCHAR2(30 BYTE) NOT NULL,
    "MANAGER ID" NUMBER (6)
                                       5
    "LOCATION ID" NUMBER (4)
   PRIMARY KEY ("DEPARTMENT ID")
```

create dynamic read only cache group *myReadCache1* autorefresh mode incremental interval 100 millseconds state on from hr.employees (employee_id number (6) not null,

first_name	varchar2(20),		
last_name	varchar2(25) not null,		
hire_date	date not null,		
job_id	varchar2(10) not null,		
salary	number (8,2),		
manager_id	number (6),		
department_id	number(4),		
primary key (employee_	_id)) <i>,</i>		
hr.job_history (employee_id	number(6) not null,		
start_date date not null,			
end_date date not null,			
job_id varchar2(10) not null,			
department_id number(4),			
primary key (employee_id, s	start_date) <i>,</i>		
foreign key (employee_id)			
references hr.employees (employee_id));			

Oracle TimesTen

ORACLE

• One technology, two products, three deployment modes

Summary

- Cloud Scale read/write caching with 1ms latency at 99th percentile
- Oracle TimesTen is faster than any NoSQL DB
- Caching is configuration, not coding
- Use TimesTen PLSQL stored procedures to minimize network hops
- Write TimesTen apps as if it were an Oracle DB*
 - SQL, JDBC, PLSQL, OCI, ODBC, ODP.Net, Pro*C, Pro*COBOL
 - R, Python, Node.js, Go, Ruby & PHP

Subset of the Oracle SQL and PLSQL