Cardinality Errors Due to Relationships Between Columns
The Oracle optimizer may miscalculate a query’s cardinality, the number of rows it returns, because it assumes an equal distribution of combinations of column values. The optimizer assumes that no relationship exists between columns. For example, we know that the zipcode column of an address table relates to the state column but the database doesn’t. It assumes that every combination of state and zipcode occurs with equal frequency, even ones like the state Alaska and a zipcode in Hawaii. I’ve put together a simple test case to show how these types of cardinality errors can lead to poor performance and what to do about it.
Combinations of column values not equally distributed
Our example script shows a case where the optimizer assumes an equal distribution of combinations of column values. Here is how the data is laid out in this test case:

select a,b,count(*) from TEST3 group by a,b;

 A B COUNT(*)

---------- ---------- ----------

 1 1 1000000

 1 2 1

 2 2 1000000

Each column has the same number of ones and twos, but the table contains only one column combination (1,2). The values within the columns are equally distributed between the two distinct values, but the combination of column values are not. Our example shows that the optimizer assumes that all four possible combinations of the two column values are equally likely. i.e. (1,1),(1,2),(2,1),(2,2) Our query selects the one row with the column values (1,2) out of the two million and one records.
select sum(a+b)

from TEST3

where

a=1 and b=2;
--

| Id | Operation | Name | Rows |

--

| 0 | SELECT STATEMENT | | 1 |

| 1 | SORT AGGREGATE | | 1 |

|* 2 | INDEX FAST FULL SCAN| TEST3INDEX | 500k|

--

Here are the relevent column and table statistics:

C LOW HIGH NUM_DISTINCT
- ---------- ---------- ------------
A 1 2 2
B 1 2 2
 NUM_ROWS

 2000001

Number of rows in plan =

(number of rows in table)*

(1/number of distinct values column A)*

(1/number of distinct values column B)
or

500000=2000001*(1/2)*(1/2)

The optimizer assumes that one fourth of the rows will have the column values (1,2). It picks a full index scan because it believes that a large number of rows will be returned. The query takes about a hundred times longer with a full scan than it does with a range scan.
SQL Profiles
SQL profiles, new with 10g, let you improve the speed of a given query by giving the optimizer the information it needs to correctly estimate the cardinality when the data in a group of columns is unequally distributed. You create SQL profiles using the SQL Tuning Advisor feature. You execute the advisor’s functions

DBMS_SQLTUNE.CREATE_TUNING_TASK, DBMS_SQLTUNE.EXECUTE_TUNING_TASK, and DBMS_SQLTUNE.ACCEPT_SQL_PROFILE

to analyze the SQL statement or statements and put the new profile in place. For brevity, I’ve just listed the names of the procedures. Here is the output of the SQL tuning advisor for the query in the example:

DBMS_SQLTUNE.REPORT_TUNING_TASK('MY_SQL_TUNING_TASK')

GENERAL INFORMATION SECTION

Tuning Task Name : my_sql_tuning_task

Scope : COMPREHENSIVE

Time Limit(seconds): 600

Completion Status : COMPLETED

Started at : 09/14/2006 13:26:05

Completed at : 09/14/2006 13:26:10

SQL ID : 2fw0d281r0x2g

SQL Text: select sum(a+b) from TEST3 where a=1 and b=2

FINDINGS SECTION (1 finding)

1- SQL Profile Finding (see explain plans section below)

--

 A potentially better execution plan was found for this statement.

 Recommendation (estimated benefit: 99.68%)

 --

 Consider accepting the recommended SQL profile.

After accepting the recommended profile the plan for the query changes. Notice that the optimizer now knows that only one row will be returned and it chooses the range scan of the index.

--

| Id | Operation | Name | Rows |

--

| 0 | SELECT STATEMENT | | 1 |

| 1 | SORT AGGREGATE | | 1 |

|* 2 | INDEX RANGE SCAN| TEST3INDEX | 1 |

--

The range scan runs the query in about one hundredth of the time as the full scan. Unfortunately, a given SQL profile only applies to a single SQL statement, so you have to generate a profile for every SQL that experiences a cardinality issue. SQL Profiles can overcome bad cardinality estimates and result in better execution plan choices, but there are cases where this feature will not improve a plan that suffers from a wrong cardinality calculation. Hints can be used to overcome cardinality errors that are due to relationships between columns when it isn’t possible to use SQL Profiles to give the optimizer the information it needs to make the best choice.
This tech tip is a slimmed down version of a presentation I gave at the SCIOUG and the Collaborate 08 usergroup conference. The full version of the paper, slides, and sample scripts and their output can be found at

http://www.geocities.com/bobbyandmarielle/sqltuning.zip
Bobby Durrett

US Foodservice
bobbyandmarielle@yahoo.com
