Focusing Your Oracle Database Tuning Efforts For PeopleSoft Applications

Bobby Durrett
U. S. Foodservice, Inc.
Introduction
The main purpose of this paper is to help people make PeopleSoft applications which run on Oracle databases run more efficiently. It can be difficult to make a PeopleSoft application perform as well as your business needs. This is because PeopleSoft is a very complicated application. Larger companies have a lot of data and make heavy use of that data. Oracle’s database software is also a very complicated product with many settings which can affect performance. The underlying operating system and hardware can be complex for large business systems like PeopleSoft. So, making PeopleSoft run fast enough can be difficult. This paper shows you how to simplify the process of speeding up PeopleSoft applications that run on top of Oracle databases. I will explain a method I use to focus in my tuning efforts on the area that will produce the most results with the least amount of work.
PeopleSoft is composed of a number of different programs that all connect to the Oracle database. For each PeopleSoft program that is logged into Oracle you have a corresponding Oracle process. Oracle calls its side of this setup a “server process.” If you have a problem with a particular PeopleSoft program running too slow, you need to find its corresponding Oracle server process and see where it is spending all of its time. If you can find out where the server process is spending the majority of its time then you can focus on tuning whatever the process is doing most of the time.

Oracle provides two different kinds of measurements of where a server process is spending its time. One is simply a measurement of the process’s CPU time. The second are waits. Waits represent the time a process is not using the CPU. Generally speaking, the time a process spends using the CPU plus the time it spends waiting should equal the total real time that elapses. But it does not always add up. So, you have to also look at the sum of all the waits and CPU time and then compare it to the elapsed time to get the full picture.

The main point of this paper is to show how to take waits, CPU and elapsed time and put them into a report that performance tuning experts call a “performance profile.” This profile lists the individual waits by name, the CPU, and the total real time that elapsed for a given Oracle server process. Within Oracle the server process is associated with a session number. So, we will be gathering these statistics for a given session number. I break up the different ways that a performance profile can come out into four categories and explain what to do if you see a profile that looks like the ones that are in those categories. I’ll show three different ways to get a profile. And I’ll give you some hints on how to determine which Oracle session corresponds to the PeopleSoft program you are trying to speed up. Lastly, I’ll include some useful references.
The diagram on the next page explains what I mean by an Oracle server process. The database server has what Oracle calls “server processes” and “background processes.” All of these processes access shared resources on the database server such as memory and disk. A server process corresponds to a single connection to Oracle from a PeopleSoft user process. A PeopleSoft user process would be something like a batch COBOL program or a connection from the application server. For each connection PeopleSoft has on the database there is a separate process on the database server.

[image: image1]
Here is a sample profile of a server process or session:

TIMESOURCE ELAPSED_SECONDS

----------------------------- ---------------

REALELAPSED 25

db file scattered read 16.000231

CPU 8.87

db file sequential read 1.286592

SQL*Net message from client .257231

log file sync .043774

direct path write .028848
SQL*Net message to client .000039
This example is of a SQL statement that ran for about 25 seconds. You can see that of the 25 seconds, two-thirds of its time was spent waiting on a db file scattered read wait. Also note that essentially all of the real time is accounted for by summing the waits and the CPU time. So in this case there is no gap between the elapsed time and the values reported by Oracle.
The key point to get here is that by lessening or eliminating the time spent waiting on “db file scattered read” you can improve the performance of this SQL by up to three times. This is because you are eliminating two-thirds of the total time. It will save you a ton of time to have this kind of profile because it means you don’t need to look at anything else besides how to eliminate this one source of time. In this case a scattered read wait means your query isn’t using an index. It may be an index needs to be added or that the SQL needs to be tuned to use an existing one. You would be able to quickly focus on the index situation to improve a query with this kind of profile.

The rest of this paper will show how to get these kinds of profiles and how to use them to handle a variety of cases.
How to get a performance profile using V$ tables

First, let’s look at the script I used to generate this profile. It uses the V$ tables. I will give you some other more accurate ways to get a profile later in the paper, but this method is simple to understand and doesn’t require any special software to be installed. It consists of two scripts. One you run to start monitoring a specific session. You run the second to stop monitoring the session and produce the profile.
Here is the first script:

DROP TABLE BEFOREOTHERSESSION;

CREATE TABLE BEFOREOTHERSESSION AS

SELECT SID,EVENT TIMESOURCE,(TIME_WAITED/100) SECONDS
FROM V$SESSION_EVENT

WHERE SID=&&MONITORED_SID;

INSERT INTO BEFOREOTHERSESSION
SELECT SID,'CPU' TIMESOURCE,(VALUE/100) SECONDS
FROM V$SESSTAT

WHERE SID=&&MONITORED_SID

AND STATISTIC#=(SELECT STATISTIC#
FROM V$STATNAME WHERE NAME='CPU used by this session');

COMMIT;

INSERT INTO BEFOREOTHERSESSION

SELECT SID,'REALELAPSED' TIMESOURCE,

(SYSDATE-TO_DATE('01/01/1900','MM/DD/YYYY'))*24*60*60 SECONDS

FROM V$SESSION
WHERE SID=&&MONITORED_SID;

COMMIT;
It prompts you for the session identifier (SID) of the session you want to monitor. The create statement loads the wait events. The first insert statement loads the CPU usage. The last insert is just used to save the current time.
Next is the script you run to stop the monitoring and get your profile:
SELECT AFTER.TIMESOURCE, AFTER.SECONDS-BEFORE.SECONDS ELAPSED_SECONDS

FROM

(

SELECT SID,EVENT TIMESOURCE,(TIME_WAITED/100) SECONDS

FROM V$SESSION_EVENT

WHERE SID=&&MONITORED_SID

UNION

SELECT SID,'CPU' TIMESOURCE,(VALUE/100) SECONDS

FROM V$SESSTAT

WHERE SID=&&MONITORED_SID

AND STATISTIC#=(SELECT STATISTIC#
FROM V$STATNAME
WHERE NAME='CPU used by this session')

UNION

SELECT SID,'REALELAPSED' TIMESOURCE,

(SYSDATE-TO_DATE('01/01/1900','MM/DD/YYYY'))*24*60*60 SECONDS

FROM V$SESSION
WHERE SID=&&MONITORED_SID

) AFTER,

BEFOREOTHERSESSION BEFORE

WHERE

BEFORE.SID=AFTER.SID AND

AFTER.TIMESOURCE=BEFORE.TIMESOURCE

ORDER BY ELAPSED_SECONDS DESC;

DROP TABLE BEFOREOTHERSESSION;

The inner select statement unions three selects. The first gets the wait events. The second gets the CPU time. The third gets the current time. The outer select statement takes these current time values and subtracts the ones that were saved by the first SQL script. The difference gives you the time spent during the monitored period of time.
Using non-idle waits to solve a performance problem

The heart of the presentation will be an explanation of how to use a performance profile to solve PeopleSoft performance issues. I will break it up into four different cases and provide one or more examples of each. In each case the majority of the process's time will fall under a certain category. These four categories are non-idle waits, idle waits, CPU, and unaccounted-for time.

Non-idle waits are the waits you typically hear about. Here are some common non-idle waits:
· buffer busy waits

· db file scattered read

· db file sequential read

· enqueue

· latch free
· log file sync

If you find your process is primarily waiting on these you should be able to find lots of help in diagnosing the issue. Sources of information are the Oracle documentation, Oracle Metalink, and many tuning books, articles, and web sites out there. The first example in the paper showed this kind of wait. Here is a simple, but useful example:
TIMESOURCE ELAPSED_SECONDS

----------------------------- ---------------

REALELAPSED 32

enqueue 30.8

CPU 0

If you look up the enqueue wait you will find that a process waiting on an enqueue is hung up on a lock. So, you just need to find what it is waiting on. Generally, non-idle waits are pretty easy to understand and get information on.

Idle waits

Idle waits are the waits people typically recommend that you ignore. For example, if most of your time is spent waiting on "SQL*Net message from client" then your Oracle process is doing nothing but waiting on your application. In this example you would focus your efforts on you application itself and not look at tuning the Oracle database, since the majority of the time was not spent in Oracle. Generally, all of the wait events that begin with “SQL*Net” are idle events. There are also a bunch of idle events related to parallel query. But PeopleSoft doesn’t really use parallel query so I won’t try to deal with that here.
Here is a profile with an idle wait as the primary consumer of time:

TIMESOURCE ELAPSED_SECONDS

----------------------------- ---------------

REALELAPSED 37

SQL*Net message from dblink 35.51

SQL*Net message from client 1.19

CPU .48

log file sync .02

In this case it is a read through a database link. If the SQL*Net waits had been filtered out, as they are in some monitoring tools, you would not know that all of the time was being spent on the remote database and not on the local one.
CPU

CPU is the server process's CPU time. If most of your server process's time is spent on the CPU then you know that you don't need to focus your tuning on your I/O system, such as your RAID configuration. You are reading mostly from memory, but maybe in an inefficient manner. SQL tuning may be most appropriate here.
Here is a profile that is CPU intensive:

TIMESOURCE ELAPSED_SECONDS

----------------------------- ---------------

REALELAPSED 39

CPU 35.7

db file sequential read 3.18

SQL*Net message from client 1.2

control file parallel write .01

log file sync .01

In this case the select statement was simply reading from blocks that were already in memory. So, disk access time was not significant.

Unaccounted-for time

Last is unaccounted-for time. This is also mostly overlooked in tuning tools. If the majority of your server process's time is unaccounted for by waits or CPU statistics then you need to look at paging or time spent on the CPU queue as the thing to be tuned. In this case you would look at other processes that are in contention with your server process for the CPU or memory.
Here is an example:

TIMESOURCE ELAPSED_SECONDS

--------------------------- ---------------

REALELAPSED 144

CPU 45.14

SQL*Net message from client .57

db file sequential read .17

db file scattered read .08

log file sync .03
In this case I had three CPU-intensive SQLs running on my single-processor laptop. For this SQL the total real time is about three times the CPU it actually consumes. If you only looked at the CPU time for this session and didn’t consider how it compared to the total elapsed time you would miss the fact that the majority of its time was spent waiting for the CPU. Knowing that this gap exists you would look for contention from other processes rather than focusing on tuning the CPU use of the SQL you were looking at.

Determining your Oracle session
Now that we have talked about how to use a profile of an Oracle session to direct your tuning efforts, we need to talk about how to figure out which Oracle session you want to profile.

In many cases, figuring out which session you want to monitor is easy because you already know it. It is the session which is consuming the most resources. You can simply use your monitoring tool of choice to look at the sessions that are the most active and pick the top one. For example, Oracle Enterprise Manager will let you sort its list of sessions such that the active sessions are at the top. Many times you can just look at the SQL of the active sessions and based on your knowledge of the application you will know that it is the correct session. But sometimes it isn’t so obvious, so here are some helpful hints.

I’ll start with a diagram of how PeopleSoft software connects to an Oracle database:

[image: image2]
The point of the diagram is that the application server has multiple connections to Oracle. If you are tuning an online application, it could be using any of the Oracle processes that the application server is attached to. Each of the other types of PeopleSoft programs has a single connection to Oracle. So, it is easier to find their Oracle session.
One challenge in identifying your Oracle session is that all of your PeopleSoft sessions login as the same Oracle user, typically SYSADM. So it is difficult to associate a particular user’s PeopleSoft session to a particular Oracle session. But PeopleSoft populates the CLIENT_INFO column in v$session with the PeopleSoft username. You can use this and the other information in v$session to help you find the session.

Here is a sample query you could use to find the right Oracle session:
SELECT

A.SID,

A.SERIAL#,

TO_CHAR(A.LOGON_TIME,'MM-DD-YYYY HH24:MI:SS') "Logon Time",

A.CLIENT_INFO,

C.SQL_TEXT

FROM V$SESSION A,V$SQLAREA C

WHERE

A.SQL_ADDRESS=C.ADDRESS (+) AND

A.SQL_HASH_VALUE=C.HASH_VALUE (+) AND

A.USERNAME = 'SYSADM' AND

A.STATUS='ACTIVE'

ORDER BY A.STATUS,A.SID,A.SERIAL#
It lists the currently active SYSADM sessions with their logon time, client info, and current sql.

Here is a sample output (edited for clarity):

SID

SERIAL#

Logon Time

CLIENT_INFO

SQL_TEXT

24

60248

12-05-2005 15:26:14

SMITH,,10.1.2.3,PROD,PSAPPSRV,

SELECT DISTINCT ALPHA, BETA, GAMMA ...

41

3767

12-05-2005 13:32:55

JONES,,10.4.5.6,PROD,PSAPPSRV,

SELECT DISTINCT ALPHA, BETA, GAMMA ...

The two sessions are app server sessions. The CLIENT_INFO field lists the PeopleSoft username, ip address of the user, database name, and the program name. Note, that for this to work you are supposed to set the flag
EnableDBMonitoring=1
in the application server configuration file.

Here is an example of the CLIENT_INFO field for an SQR:
SMITH,12904

In this case the first field is the name of the PeopleSoft user that ran the SQR. The second field is the Unix process id of the SQR executable. By doing a ps –ef and grepping on the process number you can see that it is an SQR.
Between the CLIENT_INFO information and the information from the v$ tables that are typically displayed in monitoring tools you should be able to easily identify the Oracle session you want to monitor.
Using extended SQL trace and TKPROF to get a profile

I got the term “Extended SQL trace” from the book “Optimizing Oracle Performance” by Cary Millsap and Jeff Holt. An extended SQL trace is a trace of an Oracle session that includes the wait information. By running this kind of trace and using TKPROF to summarize the results you can get a more accurate performance profile than the one generated from the v$ tables. Plus, the trace has the details that get summarized in the profile. The book is a treasure trove of great information on how to interpret these kinds of traces and use them for performance tuning. I highly recommend it.
But for here I will show how I do an extended SQL trace and how I use TKPROF. First, here is how you turn on a trace for a particular session:

In sqlplus:

execute sys.dbms_system.set_ev(12,23,10046,8,’’);

This starts a traces on the session with SID=12 and SERIAL#=23.

execute sys.dbms_system.set_ev(12,23,10046,0,’’);

This turns it off.

Once you find your trace file in the udump directory you need to run TKPROF with these arguments:

tkprof tracefile.txt tkprofout.txt waits=yes “sort=(PRSELA,EXEELA,FCHELA)” SYS=NO
“tracefile.txt” is the output of the trace. “tkprofout.txt” is the output of TKPROF. The sort options cause the SQL that ran the longest to be listed first in the TKPROF output file. This will be your most significant consumer of time.
Here is a sample TKPROF output (edited for clarity):

select count(*)

from

 dba_segments

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ----------

Parse 1 0.13 0.25 10 52 0
Execute 1 0.00 0.00 0 0 0
Fetch 2 7.99 30.57 18953 319306 0

------- ------ -------- ---------- ---------- ---------- ----------
total 4 8.12 30.83 18963 319358 0
… took out the explain plan that would be here …
Elapsed times include waiting on following events:
Event waited on Times Max. Wait Total Waited

----------------------------- Waited ---------- ------------

 SQL*Net message to client 2 0.00 0.00

 db file scattered read 1974 0.06 17.14

 db file sequential read 3621 0.03 5.25

 SQL*Net message from client 2 0.01 0.01

You have to piece together these two parts of the report to get the profile for the sql. Here is what the profile would look like if we put it in the format we used earlier in the paper:

TIMESOURCE ELAPSED_SECONDS

----------------------------- ---------------

REALELAPSED 30.83
db file scattered read 17.14

CPU 8.12
db file sequential read 5.25

SQL*Net message from client 0.01

This is my preferred method for getting a performance profile on an Oracle 9 or greater database. On previous versions of Oracle you are stuck using the V$ tables to get a performance profile. The waits=yes parameter to TKPROF is new in Oracle 9.
Using I3 to get a profile of something in the past

I3 is a tool from Veritas that will store the information needed to generate a performance profile. It used to be known as Precise. The great thing about this tool is that it automatically records information about the SQL statements that run. So, rather than have to find the Oracle session that is currently running, you can research things that have already run and see where their time was spent.

Here is a screenshot from a typical query:

[image: image3.png]= VERITAS i3 Indepth/Oracle (environment: Default)

EEER-X0) e | e | St oo
aeptr ey o Sk e S Swees W vcsivs |
Stotemant 60712002378 52761 S o o St oS s
Dok e pae Tl
- o
SRS EREN e o o
Bnots s sk st proaps

[iesia Ty

praseveson: 0

- Sateres: s Sty Orch (v

The waits listed here as “In Oracle” correspond to what I’ve described as non-idle waits, cpu, and unaccounted-for time. In this example, obviously “Using CPU” is CPU time. “I/O Wait” would correspond to “db file sequential read” and similar disk type waits. Unaccounted-for time would be a type of host wait such as “CPU wait” for time spent in the CPU queue or “Memory wait” for paging.
The “Duration” column will be greater than the “In Oracle” time if you have idle waits.

Here is how to see idle waits:

[image: image4.png]= VERITAS i3 Indepth/Oracle (environment:

: Default)

e v pw o o s wan

Bl o mecn

Stotemant 9607 312032370 32761

e

- St s et rack St [—

What I3 calls “Overall Activity” displays the idle waits. The non-idle waits, cpu time and unaccounted-for time are bundled into the generic category “In Oracle” in this graph.

For example, “SQL*Net message from client” would fall under the “Request Wait” category in the above graph if there was any.

So, you have to kind of piece together the performance profile here from a couple of screens. But all of the same information is there.

Conclusion

The main point I want to get across in the paper is that you can save yourself a ton of time tuning a PeopleSoft application that runs on Oracle by following this approach. I’ve struggled through all kinds of performance issues on production PeopleSoft systems that run on top of Oracle for the last eleven or so years. It has been some of the most challenging and enjoyable parts of my job. It is only in the last couple of years that I have come to understand the concepts included in this paper. Hopefully DBAs who are struggling through these same issues will get the same kind of benefits from it that I have. It was while I was helping a coworker use this approach that I got the idea of doing this paper. I helped her improve the performance of a frustrating problem that involved a database link between a PeopleSoft EPM and HCM instance. After that she said “you should teach!” meaning it was helpful. I hope you will find this helpful to you as well.
References
This is the fun part of this paper where I get to tell you the things I’ve read to get me to this point. Everything I know, I’ve learned from someone. I’ll try to let you know a little about each one and what I learned from it.

“Optimizing Oracle Performance” by Cary Millsap and Jeff Holt
This book is the closest to the material presented in the talk. I had already figured out most of the material that is in this paper before I read the book. But it really confirmed my thinking to see the same kind of ideas here. I highly recommend this. It is short, inexpensive, and very well written. It has tons more great material that goes far beyond this paper, and I recommend it as your next step if you want to pursue using performance profiles.
“Direct Contention Identification Using Oracle's Session Wait Event Views” by Craig Shallahamer
This paper was the one that got me going using waits to diagnose PeopleSoft performance problems. This concept helped me solve many critical performance issues and has been a great help. This paper would be a great introduction to the idea of using waits to solve performance problems if it is new to you. Craig’s website http://www.orapub.com/ has a bunch of papers you can download on performance and other issues.
“Microstate Response-time Performance Profiling” by Danisment Gazi Unal

This was the paper that led me to use the performance profile idea. I had struggled with some tuning problems that I couldn’t solve using the waits and CPU information Oracle provides. I was frustrated with not understanding why the time was not all accounted for by waits and CPU time. This paper looks at the guts of how waits and CPU are recorded by Oracle and the reasons why they don’t always add up. It was after reading this that I came up with the SQL for using V$ tables to make a performance profile. Then I read Cary Millsap and Jeff Holt’s book and it firmed up my ideas of how to use these concepts.

Peoplesoft app servers and batch

Database Server

User processes

Background processes

Server processes

Shared memory and disk

Oracle database

Application server

Two-tier windows client

Batch process (one connection each)

COBOL

SQR

App engine

Crystal

Nvision

pstools.exe

PSAPPSRV

PSQRYSRV

.

.

.

OAUG Forum at COLLABORATE 06

9

