Engineered Systems

Exadata Distinctives
Bobby Durrett, US Foods
Abstract
Exadata is a new technology from Oracle that includes new performance enhancing features that aren’t available on standard Oracle database servers. This session explains what is new or distinctive about Exadata in comparison to other systems and how to use these new features to improve application performance. This presentation draws from experiences implementing data warehouse applications on Exadata.
Target Audience

This session is targeted at database administrators and developers who have some experience with Oracle SQL query tuning.
Executive Summary

After attending this session the participant should be able to:
· Explain the different path that data flows through an Exadata system as compared with a normal system

· Modify an Oracle database application to take advantage of Exadata performance improvement features
· Make use of tips and avoid traps based on real world Exadata experience

Background

In the past Oracle has supported their database software on a wide variety of hardware platforms. A company that wanted to setup an Oracle database server would purchase hardware from other companies such as HP, Sun, or Dell and license operating system software separately as well. Disk storage hardware might be purchased from yet another company. Once these hardware platforms were installed and operating systems configured Oracle database software would be added to make a complete database server. Oracle’s Exadata product marks a departure from the previous approach of buying hardware and OS software separately from the database software. With Exadata you get a complete database server including hardware, OS, and RDBMS. Oracle’s acquisition of Sun Microsystems gave Oracle the needed hardware platform and Oracle’s Linux runs well on Sun’s Intel x86 architecture servers. But Exadata includes more than just the standard Oracle database software running on a Linux OS and Sun hardware. Exadata includes new storage server software that enables performance improvements not possible on previous systems. This presentation describes how Exadata’s storage server software changes the flow of data from the disk drives through the system in a way that improves performance. We include practical details on how to take advantage of the new features and include tips and gotchas from our own experience with Exadata. Our Exadata experience includes the deployment of a custom data warehouse application using OBIEE as a front end and the implementation of Oracle Business Intelligence Analytics to support a PeopleSoft Financials data warehouse.
Data Flow Comparisons
This presentation is based on experience with the “V2” version of Exadata so the most recent versions will have different details, but the same principles should apply. In our case we had two Exadata V2 racks. Each rack contains the following:
· 14 cell or storage servers with 12 disk drives each

· 3 Infiniband network switches

· 8 database servers

The storage and database servers are all standard Intel x86 based Sun servers running Oracle’s version of Linux. The Infiniband switches are standard Sun hardware. But, the distinctiveness of Exadata comes from the software that runs on the storage servers. The storage servers provide the disk I/O needed by the database servers but unlike normal disk I/O systems the storage servers contain software that is Oracle database aware and performs the following three functions:

· Smart Scan - returns only the needed rows and columns
· Storage Indexes - only accesses the needed blocks

· Hybrid Columnar Compression (HCC) - fits data into fewer blocks than possible with normal compression

The storage servers actually look at the query itself and use information from the query to reduce the amount of data that is read from disk and that flows from the storage servers to the database servers. A normal database server would simply send requests for particular blocks back to the storage system without any information about the query that is making the request. This intelligence that is built into the storage servers - also called cell servers - is what makes Exadata unique.
I’ve put four simple diagrams together to attempt to explain the differences between Exadata and other Oracle database systems. They all illustrate the path that data takes from the disk drives to the end user. The point is that the path taken on Exadata at times resembles that of other systems but in other cases is significantly different. These differences result in improvements in performance not possible with the other data paths.
[image: image1.wmf]USER

BLOCKS

RESULTS

DATABASE SERVER

DISKS

MEMORY

CACHE

INDEXES

COMPRESSION

Database Server with Just Disks

The “database server with just disks” diagram is intended to represent older systems that had locally attached disk drives connected to disk controller cards. In those systems data is collected into blocks on the disk drives. Each block contains a number of rows and each row is composed of a number of columns. Based on the query certain blocks are read from the disk drives into Oracle’s memory cache, the database block cache. Then, based on which rows and columns were selected by the query the requested results are returned to the user (the application). The memory cache speeds the performance of queries because blocks that were previously requested may still be in the memory cache and then the needed blocks are read directly from memory. As a rule of thumb memory (RAM) is about 1000 times faster than disk. So, 10 milliseconds for a disk read and 10 nanoseconds for a memory read. So, normal database servers speed performance with memory caching. They also speed performance with indexes. An index will reduce the number of disk blocks read from the table. Without an index an entire table has to be scanned to find the needed rows. Also, standard compression causes rows to fit into fewer blocks on the disk. Since disk reads are so much slower than memory reads it helps to compress rows into as few disk blocks as possible.
[image: image2.wmf]USER

BLOCKS

DISKS

MEMORY

CACHE

COMPRESSION

INDEXES

MEMORY

CACHE

RESULTS

BLOCKS

Disk Array

(

e

.

g

.

XP

24000

)

Database Server

NETWORK

Database Server with SAN

With the advent of Storage Area Networks or SANs it became possible to have Oracle database servers that didn’t use locally attached disk drives. Instead the servers have special high capacity and low latency network cards that connect to a network that connects back to a storage server with disk drives and a high speed memory cache. From the database server’s perspective the SAN storage is no different from the disk storage. It is just a device that can return blocks of information. But, behind the scenes the SAN has introduced a layer of memory caching and networking. Note that with a SAN the database server still has its own memory cache, indexes, and compression to speed performance.
[image: image3.wmf]USER

BLOCKS

DISKS

MEMORY

CACHE

RESULTS

Cell Storage Server

Database Server

NETWORK

Exadata with Smart Scan

INDEXES

COMPRESSION

Standard Oracle SQL queries can run two different ways on Exadata - with or without the “Smart Scan” feature. A Smart Scan is a read of data from a table that takes advantage of the cell server’s special ability to process SQL at the storage level. The diagram illustrates how data from a single table flows through the system in the case of a Smart Scan. The point here is that the storage server has taken on the functions previously seen at the database server level, namely memory caching, compression, and indexing. Also, note that the Smart Scan does not return full blocks of data to the database server. Only the needed rows and columns are returned. I made the “RESULTS” arrow go straight through the database server only to illustrate that the results do not go to the database block cache. If the query was from a single table and had no joins this picture is pretty accurate. In the case of a join between two tables that were both queried using Smart Scans the results from both scans would be joined together, probably in a hash join and the results returned to the user. But the point is that the results from each Smart Scan are not cached at the database server level. The benefit from the Smart Scan comes from eliminating the extra rows and columns that aren’t needed by the query at the storage level rather than waiting for the disk blocks to be copied to the database server first before the data is trimmed down to just the rows and columns requested by the query.

[image: image4.wmf]USER

BLOCKS

DISKS

MEMORY

CACHE

COMPRESSION

INDEXES

MEMORY

CACHE

RESULTS

BLOCKS

Cell Storage Server

Database Server

NETWORK

Exadata without Smart Scan

Not every table access on an Exadata system uses a Smart Scan. When a query on Exadata doesn’t use Smart Scan the flow of data closely resembles that of a normal database server with a SAN. In this case the cell storage servers just serve disk blocks back to the database server and then all of the normal Oracle database performance features are back in play including indexes, the block cache, and normal compression. So, there are really two paths for data to flow through an Exadata system - the Smart Scan path and the normal path. The Smart Scan path is new and different with Exadata but the other path is still present and all of the tuning methods developed over years of work with earlier Oracle servers are still in play on Exadata.
SQL Tuning Using Smart Scans

So, how do you take advantage of the new Smart Scan feature of Exadata? Really, it is as easy as causing a query to use a full table scan. Any query that does a full scan of a table on an Exadata system will automatically do a Smart Scan unless you do something to prevent it. One of the fundamental skills of Oracle SQL tuning is to make a query use a full scan when that is more efficient and to use an index when that is more efficient. Generally, when the conditions in a SQL query cause a small percentage of the rows to be accessed it is more efficient to use an index than to do a full scan of the table. A query tuner will figure out what proportion of the rows from a given table that a query will return and cause the query to do a full scan when more than the smallest percentage of the rows is accessed. Here are some standard ways to force a full table scan in an Oracle query:
· Drop indexes

· Make indexes invisible

· Increase optimizer_index_cost_adj to discourage index use

· Use FULL hints to force full scans
So, imagine that you have an application that uses a normal Oracle database server and then you move it to an Exadata database server. I.e. You export/import the full database from the old database to a new one on Exadata and connect your application to the new database on Exadata. Without doing anything else any query that the optimizer determines needs a full scan will automatically do a Smart Scan. The use of Smart Scans is automatic. But, some queries may be using index scans and therefore bypassing the new Smart Scan features. In some cases this is fine. Smart Scans are not necessarily faster than index scans. But, you can check by dropping indexes or making them invisible. You can also increase the parameter optimizer_index_cost_adj to discourage the use of indexes throughout the instance. Lastly, you can use a FULL hint to force a full table scan - and hence a Smart Scan. The key is to try your queries both ways and see which is better. But, this is easy to do and that is really the benefit of Exadata Smart Scans. They automatically improve performance without additional labor and with a small amount of labor (i.e. making an index invisible) they can improve performance further.
If you have a query that is doing a Smart Scan and you want it to do an index scan you just do the reverse of the four things listed above - add an index, make an index visible, back out the increase in optimizer_index_cost_adj, or add an INDEX hint.
 But you can also set the parameter CELL_OFFLOAD_PROCESSING to false in the following ways:
· alter system set CELL_OFFLOAD_PROCESSING=FALSE; - This affects every query on the system
· alter session set CELL_OFFLOAD_PROCESSING=FALSE; - This affects just one session
· hint - /*+ OPT_PARAM('cell_offload_processing' 'false') */ - This affects only the one query
There are a couple of different cases where you would want to set CELL_OFFLOAD_PROCESSING to false. One would be if you really want your query to run a regular full table scan. I haven’t seen a case where there would improve performance, but it is at least possible. The other use is where you suspect that the Smart Scan processing is producing an incorrect result or some other bug like condition. If you set CELL_OFFLOAD_PROCESSING to false you bypass all of the Smart Scan processing and go back to the normal Oracle query processing.
Tips And Traps

Now that we’ve discussed the different way data flows through an Exadata Smart Scan as compared with normal Oracle SQL processing and shown practically how to take advantage of this new query execution method let’s fill out the remainder of the presentation with some miscellaneous lessons learned from our implementations.

One interesting detail is that the cell server memory cache is “flash” memory. Flash memory is cheaper than the regular RAM used in the database server memory cache. It is also slower. So, while it would take roughly 10 nanoseconds to do a memory read from the database server’s buffer cache it takes about 100 times more, or 1 millisecond to do a read from the flash memory on the cell servers. So, when you are deciding whether a query should use a Smart Scan to access a table or to do a normal index scan instead keep in mind that index scan will draw from a buffer cache that is much faster than the one the Smart Scan uses. But, the Smart Scan operates at the storage layer so the benefits gained from eliminating unneeded data before it flows back to the database server may outweigh the benefits of using a faster cache at the database level.

The storage indexes are largely out of our control and not really visible or documented. Note that this was true when this presentation was originally put together. Over time Oracle may open up more visibility into the storage indexes and if fact I would expect it to happen. But, I’m not aware of it at this time.
Exadata databases aren’t portable. If you make a clone of an Exadata database on a non-Exadata system such as a Linux virtual machine there are two problems. If you have used Hybrid Columnar Compression (HCC) you won’t be able to uncompress your tables or use them on your cloned system. Equally critical is that on a normal system you won’t have Smart Scans. So, your queries that have been tuned to work on Exadata - taking advantage of Smart Scans, storage indexes, and flash memory will potentially be so slow that they are unusable. The Smart Scans will simply be full table scans and for large tables this could make the performance so poor that the system couldn’t be used even for simple testing.
We have hit a number of bugs because we are using HCC on a large table with more than 255 columns. Of course, if you are running on the most recent patch levels you won’t hit the bugs that we did assuming they are all fixed by now which may or may not be true. But, if you have a choice I’d advise keeping your tables to fewer than 255 columns. Why would anyone need more than 255 columns in a single table?
As with any new major feature of Oracle you have to expect some issues and for it to take a while for the bugs to be shaken out. We started out on Oracle 11.2.0.1 on an Exadata V2, the first version of Exadata to run on Sun hardware. It may well be that the most current versions of Exadata with the most current patches will be more reliable that what we have experienced, but we have hit a number of bugs resulting in hangs, crashes, performance problems and wrong results. So, I would recommend thoroughly testing your applications before putting an Exadata system into production and certainly be sure you are on the most current patches on all of the Exadata components - Infiniband switches, Linux, cell server software, and database.

Another recommendation would be to use as few RAC nodes as possible for a given database. There are issues with how RAC uses the temp tablespace. We have had some serious performance issues because poorly written queries have eaten up a lot of temp space on a certain RAC node. Evidently the process of reallocating temp space from the sort segment on one RAC node to another is very inefficient, so you need to make sure that each instance has enough temp space so that even the biggest consumer won’t require space to be reallocated from another instance. The fewer nodes you have the easier this is to do because you have to have enough space on each node for the query that consumes the largest amount of temp space. So, if you need 500 gig of temp space per node you only need 1 terabyte of temp with two RAC nodes but with 8 RAC nodes you would need 4 terabytes. This assumes your peak temp usage will be 500 gig and that this peak can occur on any node.
Conclusion
Exadata gives you another path for data to flow from the disk drives to the application using Smart Scans. Smart Scans can potentially make dramatic improvement in the performance of an application with minimal labor. A few simple steps can help maximize the benefit of Exadata’s Smart Scans by allowing the query tuner to pick and choose the cases where Smart Scans are used so that they are only used when they improve performance. There are some things to watch out for as in any new technology but hopefully this presentation will help people avoid some of the pitfalls and take advantage of some of the lessons learned in our implementation.

This paper was written for the Collaborate 13 conference and the IOUG. Any updates to this paper and the related slides will be published on the resources page of my blog:

http://www.bobbydurrettdba.com/

8

Session #988

